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Abstract
Given a sequence of apparently random point events, such as neuronal spikes,
one may interpret them as being derived either irregularly in time from
a constant rate or regularly from a fluctuating rate. To determine which
interpretation is more plausible in any given case, we employ the empirical
Bayes method. For a sequence of point events derived from a rate-fluctuating
gamma process, the marginal likelihood function can possess two local maxima
and the system exhibits a first-order phase transition representing the switch of
the most plausible interpretation from one to the other.

PACS numbers: 02.70.Rr, 02.50.Tt, 02.50.−r, 05.70.Fh

Accurate statistical descriptions of neuronal spike sequences are essential for extracting
underlying information about the brain [1–4]. It had been believed that in vivo cortical
neurons are Poisson spike generators [5–7]. This belief was due to the apparent randomness
of neuronal spike events, the exponential distribution of inter-spike intervals and the fact that
the values of the coefficient of variation are close to unity. However, a recent analysis using
a newly introduced measure of the local variation of inter-spike intervals revealed that in vivo
spike sequences are not uniformly random but, rather, possess statistical characteristics specific
to individual neurons [8]. The neocortex consists of heterogeneous neurons that differ not
only from one cortical area to another, but also from one layer to another in their spiking
patterns [9].

The main reason that different spiking characteristics had been incorrectly interpreted as a
simple Poisson process is that most analyses were based on the assumption of the stationarity,
or constancy, of the rate. The new measure of the local variation of inter-spike intervals is
efficient in classifying individual neurons, robustly against rate fluctuation [10]. But it is
nevertheless desirable to formulate a systematic method of simultaneously characterizing not
only the intrinsic irregularity but also the fluctuating rate of an individual spike train. Here,
we examine the empirical Bayes method [11–15] on its applicability to non-stationary point
processes.
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In particular, we first generate sequences of point events using the rate-fluctuating gamma
process, and then apply the empirical Bayes interpretation on each sequence. It is found
that the ‘marginal likelihood function’ or the ‘evidence’, whose logarithm corresponds to the
negative free energy in equilibrium thermodynamics, can possess two maxima in the space
of the hyperparameters that represent the degree of spiking irregularity and the magnitude of
the rate fluctuation. As the rate fluctuation of the underlying gamma process is increased,
the marginal likelihood function obtained from the empirical Bayes method exhibits a first-
order phase transition corresponding to the switch of the most plausible interpretation from
(I) irregularly derived from a nearly constant rate to (II) rather regularly derived from a
significantly fluctuating rate.

Rate-fluctuating gamma process

First, we consider point events (or spikes) occurring along the time axis according to the
renewal process with a given inter-event interval distribution. In the present letter, we employ
the gamma distribution function,

fκ(x) = κ(κx)κ−1 e−κx/�(κ), (1)

where �(κ) ≡ ∫ ∞
0 xκ−1 e−x dx is the gamma function. This fκ(x) is defined as a function of

a dimensionless variable x, which makes the mean of x unity, independent of the parameter κ .
A rate-fluctuating gamma process could be constructed by rescaling the time [16, 17] of

the renewal gamma process with a given time-dependent rate λ(t) as

�(t) ≡
∫ t

0
λ(u) du. (2)

Then, the conditional probability for a spike to occur at ti , given that the preceding spike
occurred at ti−1, is given by

rκ(ti |ti−1; {λ(t)}) = λ(ti)gκ(�(ti)|�(ti−1)), (3)

where

gκ(z|y) ≡ fκ(z − y)

1 − ∫ z

y
fκ(x − y) dx

(4)

is the conditional intensity function or the ‘hazard function’ [18].
From this, we find that the probability density for spikes to occur at {ti}ni=0 =

{t0, t1, . . . , tn} for a given time-dependent rate λ(t) is

pκ

({ti}ni=0

∣∣{λ(t)}) =
[

n∏
i=1

rκ(ti |ti−1; {λ(t)})
]

exp

(
−

∫ T

0
rκ(u|tN(u); {λ(t)}) du

)
, (5)

where the exponential of the integral on the rhs is the survivor function representing the product
of the probabilities with which no spikes occur in the inter-spike intervals and N(t) is the total
number of spikes in the interval (0, t] for t ∈ (0, T ] [19]. This rate-fluctuating gamma process
is a natural extension of both the time-dependent Poisson process (κ = 1) and the renewal
gamma process (for which λ(t) is constant).
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Empirical Bayes method

For a sequence of point events {ti}ni=0 derived from the rate-fluctuating gamma process defined
by equation (5), we apply the Bayes method for the inference of the time-dependent rate λ(t).
As the prior distribution of λ(t), we introduce here a tendency to flatness in the form

pβ({λ(t)}) = 1

Z(β)
exp

[
−β

∫ T

0

(
dλ

dt

)2

dt

]
, (6)

where the hyperparameter β represents the stiffness of the rate fluctuation and Z(β) is a
normalization constant.

The posterior distribution of λ(t) for a given set of data {ti}ni=0 is obtained using the Bayes
formula as

pκ,β

({λ(t)}|{ti}ni=0

) = pκ

({ti}ni=0

∣∣{λ(t)})pβ({λ(t)})
pκ,β

({ti}ni=0

) , (7)

where pκ,β

({ti}ni=0

)
is the ‘marginal likelihood function’ or the ‘evidence’ for the

hyperparameters κ and β, with the given data {ti}ni=0:

pκ,β

({ti}ni=0

) =
∫

pκ

({ti}ni=0

∣∣{λ(t)})pβ({λ(t)}) d{λ(t)}. (8)

The integration here is a functional integration over λ(t). According to the empirical Bayes
theory, the hyperparameters κ̂ and β̂ can be determined by maximizing the marginal likelihood
function [11–15]. The log marginal likelihood function corresponds to the negative free energy
in equilibrium thermodynamics.

By applying the variational method to the log posterior distribution

log pκ̂,β̂

({λ(t)}|{ti}ni=0

) ∝ log pκ̂

({ti}ni=0

∣∣{λ(t)})pβ̂({λ(t)})

=
n∑

i=1

log rκ̂ (ti |ti−1; {λ(t)}) −
∫ T

0
rκ̂ (u|tN(u); {λ(t)}) du − β̂

∫ T

0
(dλ/dt)2 dt, (9)

the maximum a posteriori (MAP) estimate λ̂(t) is found to satisfy the integro-differential
equation

2β̂
d2λ̂

dt2
= rκ̂ (t |tN(t); {λ̂(t)})

λ̂(t)
−

n∑
i=1

δ(t − ti)

λ̂(ti)
, (10)

where δ(t) denotes the Dirac delta function. The term rκ̂ (t |tN(t); {λ̂(t)}), defined by
equations (3) and (2), contains the integration over λ̂(t). We recently realized that in
[20, 21], a differential equation similar to the present integro-differential equation is derived
using the saddle point approximation of quantum field theory.

Our method of analysis can be summarized as follows. First, for a given spike train,
the optimal hyperparameters κ̂ and β̂ are determined by maximizing the marginal likelihood
function, equation (8). This maximization can be carried out with the expectation maximization
(EM) algorithm under the assumption that the distribution of λ(t) is Gaussian [22, 23]. Second,
the integro-differential equation (10) is solved numerically with the hyperparameters κ̂ and β̂

to obtain the MAP estimate of the rate of occurrence λ̂(t).

Data analysis

Here, we apply our method of analysis to sequences of point events derived from rate-
fluctuating gamma processes to observe how such data are interpreted according to the
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Figure 1. Left: a contour plot of the log marginal likelihood function in the space of the
hyperparameters κ and β for a sequence of 105 point events derived from the rate-fluctuating
gamma process with κ = 5, σ/µ = 0.6 and τµ = 2.2. Right: two interpretations obtained for
the same sequence of point events. The dotted lines represent the original underlying rate λ(t)

and the original gamma distribution with κ = 5. The solid lines represent the inferred rate λ̂(t)

and the inferred gamma distribution of κ̂ .

empirical Bayes method. In the present study, we consider a rate of occurrence λ(t) that
is regulated sinusoidally in time as

λ(t) = µ + σ sin
t

τ
. (11)

In the case that λ(t) � 0, which occurs for |σ | � µ, we stipulate that point events are not
generated.

This process is characterized by two independent dimensionless parameters, σ/µ and τµ,
respectively representing the amplitude and the time scale of the rate fluctuation. For each set
of values of these dimensionless parameters, we derived a sequence of 105 point events, from
which we numerically computed the marginal likelihood function, equation (8).

Figure 1 presents a contour plot of the log marginal likelihood function obtained for a
sequence of point events generated from the rate-fluctuating gamma process. It is seen that
the (log) marginal likelihood function possesses two local maxima, which correspond to the
following two interpretations:

(I) The point events were derived irregularly in time (κ̂ small) from a nearly constant rate
(β̂ large).

(II) The point events were derived rather regularly (κ̂ large) from a significantly fluctuating
rate (β̂ small).

The log marginal likelihood function corresponds to a negative free energy. In the case
that there exist multiple local minima of the free energy, the lowest minimum is chosen,
as in equilibrium thermodynamics. When the amplitude, σ/µ, or the time scale, τµ, of
the underlying rate fluctuation is increased, the system exhibits a first-order phase transition
corresponding to an abrupt switch of the most plausible interpretation from (I) to (II).

Figure 2(a) presents phase diagrams in the space of the original parameters, σ/µ and
τµ, of three kinds of event generating processes characterized by different intrinsic spiking
(ir)regularities: κ = 5 (quasi-regular), κ = 1 (random) and κ = 0.5 (clumpy-bursty). It
is seen that the parameter space is divided into four characteristic regions, in which the
marginal likelihood function has (A) a single maximum, corresponding to a nearly constant
rate (stiffness β̂ large), (B) two maxima, corresponding to a nearly constant rate (β̂ large)
and a significantly fluctuating rate (β̂ small), with the former representing a higher marginal
likelihood, (C) two such maxima, with the latter representing a higher marginal likelihood,
and (D) a single maximum, corresponding to a significantly fluctuating rate (β̂ small).
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Figure 2. (a) Phase diagrams for sequences generated by rate-fluctuating gamma processes with
three values of the intrinsic spiking regularity κ = 5, κ = 1 and κ = 0.5. Four characteristic
phases A, B, C and D explained in the text are represented by dots, crosses, open circles and
filled circles, respectively. The solid line in the figure for κ = 1 represents the phase boundary
for which the optimal bin width in the time histogram method diverges, σ 2τ/µ = π/8. (b) The
empirical Bayes estimates of the coefficient of intrinsic spiking regularity, κ̂ , for various values
of σ/µ, with fixed τµ = 10. The coefficient that gives a higher/lower marginal likelihood is
represented by a solid/dotted line. The coefficient estimated from the values of the local variation,
κ̃LV = 3/(2LV) − 1/2, is represented by a dashed line. The coefficient estimated from the values
of the coefficient of variation, κ̃CV = 1/(CV)2, is represented by a dot-dashed line.

Figure 2(b) depicts how the estimated intrinsic regularity, κ̂ , is affected by the underlying
rate fluctuation. It is interesting to compare this with the value of the local variation,

LV ≡ 3

n − 1

n∑
i=1

(Ti − Ti+1)
2

(Ti + Ti+1)2
, (12)

computed for the sequence of inter-event intervals {Ti ≡ ti − ti−1}ni=1. It is shown in [8] that
LV corresponds to the value 3/(2κ + 1) for a renewal gamma process of κ . Therefore, the
intrinsic regularity κ may be inferred from the LV estimate as

κ̃LV = 3/(2LV) − 1/2. (13)

The intrinsic regularity κ can also be inferred from the coefficient of variation [18], which is
defined as the ratio of the standard deviation of inter-spike intervals 
T to the mean T̄ , as

κ̃CV = 1/(CV)2 = T̄ 2/(
T )2. (14)

It is seen from figure 2(b) that the empirical Bayes estimate κ̂ and the LV estimate κ̃LV indicate
values comparably close to the original coefficient κ = 5, 1 or 0.5. In contrast, the CV

estimate κ̃CV does not effectively extract the original intrinsic regularity from rate-fluctuating
spike trains.

In addition to allowing an estimation of the intrinsic regularity, the Bayes method has the
further advantage over that based on the coefficient of local variation LV that it simultaneously
yields an estimation of the fluctuating rate. It should be noted, however, that the empirical
Bayes method does not necessarily infer a time-dependent rate, even for data derived from
rate-fluctuating gamma processes, as in the parameter regions (A) and (B) in figure 2(a).

Similar phenomena are observed with the time histogram method. In that case, the optimal
bin width, which is determined by finding the best fit of the time histogram to the underlying
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rate of occurrence, can diverge, in what constitutes a second-order phase transition [24]. For
the sinusoidally regulated Poisson processes, it was proven that the optimal bin width diverges
in the region satisfying σ 2τ/µ < π/8. We plot this second-order transition line in the Bayes
phase diagram for sinusoidally regulated Poisson processes, κ = 1, in figure 2(a).

In the present letter, we have applied the empirical Bayes method to sequences of point
events derived from rate-fluctuating gamma processes, in particular to the case in which the
rate λ(t) is regulated sinusoidally. We have also examined the case in which the rate is driven
by the Ornstein–Uhlenbeck process and found that the results are qualitatively the same.
Furthermore, we have examined the robustness of the present method of analysis against
noises. Namely, we added a Gaussian white noise to the original time-dependent rate and
derived an event sequence from the noisy rate. We have observed that the estimated irregularity
and rate are not significantly altered by the noise. A slight change due to the noise is that
the local maximum of the marginal likelihood corresponding to the interpretation ‘irregularly
derived from a constant rate’ becomes a little larger.

In all the cases, there is a first-order phase transition which corresponds to the abrupt
switch of the most plausible interpretation derived from the empirical Bayes method from (I)
irregularly derived from a constant rate to (II) regularly derived from a fluctuating rate.

The present analysis is based on the assumption that the intrinsic regularity characterized
by the inter-event interval distribution, fκ(x), does not change in time. It would be interesting
to construct a Bayesian framework applicable to point processes in which both the rate and
the intrinsic regularity fluctuate in time. We are currently working on the application of the
method to the analysis of real biological data to determine whether the assumption of fixed
intrinsic regularity is plausible.
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